ON SURFACES OF FINITE TOTAL CURVATURE

S. MÜLLER & V. ŠVERÁK

Abstract

We consider surfaces M immersed into \mathbf{R}^n and we prove that the quantity $\int_M |A|^2$ (where A is the second fundamental form) controls in many ways the behaviour of conformal parametrizations of M. If M is complete, connected, noncompact and $\int_M |A|^2 < \infty$ we obtain a more or less complete picture of the behaviour of the immersions. In particular we prove that under these assumptions the immersions are proper. Moreover, if $\int_M |A|^2 \le 4\pi$ or if n=3 and $\int_M |A|^2 < 8\pi$, then M is embedded. We also prove that conformal parametrizations of graphs of $W^{2,2}$ functions on \mathbf{R}^2 exist, are bilipschitz and the conformal metric is continuous. The paper was inspired by recent results of T.Toro.

1. Introduction

Let M be a complete , connected, noncompact, oriented two-dimensional manifold immersed in \mathbf{R}^n . If the second fundamental form A satisfies $\int_M |A|^2 < +\infty$ then a well-known result of Huber implies that there exists a conformal parametrization $f: S \setminus \{a_1, \ldots, a_q\} \to M \hookrightarrow \mathbf{R}^n$, where S is a compact Riemannian surface. One of our aims in this paper is to study f (viewed as a map into \mathbf{R}^n) in a neighbourhood of the "ends" a_i . We shall see that f resembles (in a rather weak sense, cf. Proposition 4.2.10) the function $(z-a_i)^{-m_i}$ in that neighbourhood. We can call the integer m_i the multiplicity of the end at a_i . One con-

Received April 8, 1993 and, in revised form, February 10, 1994. Affiliated with SFB 256, partially supported by NSF grant DMS-9002679 and DFG grant Mu 1067/1-1. Affiliated with SFB 256. This work was finished during a visit of both authors to the Institute Advanced Study which was made possible by grant 93-6-6 from the Alfred P. Sloan Foundation.

sequence of our analysis is that M is properly immersed which resolves a conjecture of White [39] (see Corollary 4.2.5). Using results of Shiohama [30] (or Li and Tam [19]) we obtain in addition the Gauss-Bonnet formula (see Corollary 4.2.5)

$$\int_M K = 2\pi (\chi_M - m),$$

where χ_M is the Euler characteristic and m is the total number of ends (counted with their multiplicity). In particular if $\int_M K = 0$ then M is conformally equivalent to \mathbf{C} . Moreover, we show that if $\int_M |A|^2 < 4\pi$ (or 8π for surfaces in \mathbf{R}^3) then the conformal parametrizations $f: \mathbf{C} \to M \hookrightarrow \mathbf{R}^n$ satisfy (after a suitable normalization)

$$e^{-C}|z_1-z_2| \le |f_0(z_1)-f_0(z_2)| \le e^C|z_1-z_2|.$$

where C depends only on $\int_M |A|^2$ and thus M is embedded. This can be considered as a generalization of a result from [20] to the noncompact case.

Our proofs rely mainly on PDE techniques. In particular we use the fact that for a conformal parametrization with metric $e^{2u}\delta_{ij}$ one has the identity

$$-\Delta u = Ke^{2u}.$$

where K denotes the Gauss curvature. At first glance this does not seem to be of much use as the assumption $\int_M |A|^2 < +\infty$ only implies that the right hand side is in L^1 while there is no L^1 theory for the Laplace operator. Using (and in fact generalizing) recent results of Coifman, Meyer, Lions and Semmes [7] (see also [23]) one can show, however, that Ke^{2u} is in fact bounded in the Hardy space \mathcal{H}^1 . Then one can apply classical results of Fefferman and Stein [11] to obtain good estimates for u. We refer to section 3 for the details. For Hardy space estimates in other problems with critical growth we also refer to [2, 8, 9] and [12].

We remark that for most of our purposes here the use of Hardy spaces is not stricly necessary. Instead of using the \mathcal{H}^1 -estimates for the Laplace operator, one can apply the results of Wente [38] about the equation $\Delta u = \det D\varphi$. See also [3] and [35].

Our work was inspired by the remarkable results of Toro [36]. She showed, among other things, that the graph Γ of any $W^{2,2}$ function

 $w: \mathbf{R}^2 \to \mathbf{R}$ admits a bilipschitz parametrization $f: \mathbf{R}^2 \to \Gamma \subset \mathbf{R}^3$. Using our methods we obtain the following variant of her result. Let $w: \mathbf{R}^2 \to \mathbf{R}$ be a function of $W^{2,2}_{\mathrm{loc}}$ and assume that $D^2w \in L^2(\mathbf{R}^2)$. Then the graph Γ of w can be parametrized by a bilipschitz map $F: \mathbf{R}^2 \to \Gamma \subset \mathbf{R}^3$ such that

$$(1+c||D^2w||_{L^2}^2)^{-1/2}|x-y| \le |F(x)-F(y)|$$

$$\le (1+c||D^2w||_{L^2}^2)^{1/2}|x-y|,$$

$$||D^2F||_{L^2} \le c||D^2w||_{L^2}$$

and the metric $(DF)^t(DF)$ is continuous.

The well-known example (see e.g. [16]) $w(x_1, x_2) = x_1 \sin(\log |\log \sqrt{x_1^2 + x_2^2}|)$ (considered in a neighbourhood of 0) shows that in general the normal to the graph of w may not be continuous.

Global properties of complete minimal surfaces of finite total curvature have been studied by Osserman [24] in the case n=3 and by Chern and Osserman [5] in general. In the paper of White [39] some of their results are proved without assuming that the surface is a minimal surface. We also refer the reader to a recent note by Cheung [6]. See also the nice expositions by Lawson [18] and Rosenberg [25]. In the fundamental paper of Huber [15] complete surfaces with finite total (Gauss) curvature are studied from the intrinsic point of view. For further "intrinsic" results see Li and Tam [19]. The extrinsic geometry of surfaces whose Gauss map is merely small in the space BMO has recently been studied by Semmes [26, 27, 28].

2. Preliminaries

2.1. We shall identify \mathbf{R}^2 and \mathbf{C} in the obvious way: $(x_1, x_2) \sim z = x_1 + ix_2$. The Lebesgue spaces L^p and the Sobolev spaces $W^{k,p}$ are defined in the usual way. To avoid any misunderstanding, we recall some facts concerning the spaces $W_0^{1,2}(\mathbf{C})$ and $W^{-1,2}(\mathbf{C})$ which will be frequently used throughout the paper. As usual, we denote by $W_0^{1,2}(\mathbf{C})$ the space of all distributions u with $Du \in L^2(\mathbf{C})$. It is well-known (and easily verified) that smooth functions with compact support are dense in $W_0^{1,2}(\mathbf{C})$ (with respect to the semi-norm given by $\int_{\mathbf{C}} |Du|^2$). The dual of $W_0^{1,2}(\mathbf{C})$ (or more precisely, the space of all distributions on \mathbf{C}

which are continuous with respect to the seminorm $\int_{\mathbf{C}} |Du|^2$ will be denoted by $W^{-1,2}(\mathbf{C})$. For a locally integrable function v on \mathbf{C} we let

$$||v||_{W^{-1,2}}=\sup\{\int_{\mathbf{C}}vu\,;\,u:\mathbf{C}\to\mathbf{R}\text{ is smooth,}$$
 compactly supported, and $\int_{\mathbf{C}}|Du|^2\leq 1\}.$

The Sobolev spaces of differential forms on manifolds are defined in the usual way, for example by using charts. See [22] for details.

- **2.2.** We denote by $\mathbf{G}_{n,2}$ the Grassmannian manifold of oriented, two-dimensional subspaces of \mathbf{R}^n . We recall that $\mathbf{G}_{n,2}$ embeds naturally as the quadric $\{z_0^2 + \dots z_{n-1}^2 = 0\}$ into $\mathbf{P}^{n-1}(\mathbf{C})$ and can therefore be considered as a Kähler manifold. In particular, the standard Kähler two-form ω on $\mathbf{P}^{n-1}(\mathbf{C})$ gives a two-form on $\mathbf{G}_{n,2}$. We recall that ω can be defined as follows: if $\pi: \mathbf{S}^{2n-1} \to \mathbf{P}^{n-1}(\mathbf{C})$ is the canonical fibration, then $\pi^*\omega = \sum_{k=0}^{n-1} idz_k \wedge d\overline{z}_k$.
- **2.3.** Let Σ be a surface (i.e. a two-dimensional oriented manifold) immersed into \mathbf{R}^n . We use the letter Σ when dealing with surfaces which are possibly not complete. Basically these will be open parts of the surface M from the introduction. We use the notation $\Sigma \hookrightarrow \mathbf{R}^n$ to denote that Σ is immersed into \mathbf{R}^n . (Hence $\Sigma \hookrightarrow \mathbf{R}^n$ and $\Sigma \subset \mathbf{R}^n$ do not have the same meaning.) We consider Σ as a Riemannian manifold, the metric being induced by the immersion. Since the dimension of Σ is two, the metric defines also an integrable complex structure on Σ , and Σ can thus be also considered as a one-dimensional complex manifold.

We denote by $G: \Sigma \to \mathbf{G}_{n,2} \subset \mathbf{P}^{n-1}(\mathbf{C})$ the Gauss map which assigns to each $x \in \Sigma$ the oriented tangent plane to Σ at x. (Recall that Σ is assumed to be oriented.) The second fundamental form of Σ is denoted by A. Up to a suitable normalization, A can be identified with the derivative DG of the Gauss map. With our choice of the metric on $\mathbf{G}_{n,2}$, we have $\frac{1}{2}|A|^2 = |DG|^2$. (Here $|A|^2 = \sum_{i,j} |A(e_i,e_j)|^2$, where (e_1,e_2) is any (locally defined) orthogonal frame.)

The Gauss curvature of Σ is denoted by K. We have $K\sigma = G^*\omega$, where σ is the volume form on Σ .

2.4. Let Σ be as in 2.3 and assume that there exists a conformal parametrization $f: \Omega \to \Sigma \hookrightarrow \mathbf{R}^n$, where $\Omega \subset \mathbf{C}$ is an open domain. If we consider f as a mapping $\Omega \to \mathbf{R}^n$, the Cauchy-Riemann conditions imply $|f_{x_1}| = |f_{x_2}|$ and $f_{x_1} \cdot f_{x_2} = 0$.

Let u be given by $e^u = |f_{x_1}|$. Let us also define $\varphi : \Omega \to \mathbf{G}_{n,2} \subset \mathbf{P}^{n-1}(\mathbf{C})$ by $\varphi = G \circ f$. We recall that

$$(2.4.1) -\Delta u = Ke^{2u},$$

where $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$. This can be rewritten as

$$(2.4.2) -d * du = \varphi^* \omega.$$

The conformal invariance of the Dirichlet integral gives

(2.4.3)
$$\int_{\Omega} |D\varphi|^2 = \int_{\Sigma} |DG|^2 = \int_{\Sigma} \frac{1}{2} |A|^2.$$

- **2.5.** Assume that M is a complete surface (i.e. complete oriented two-dimensional manifold) immersed in \mathbf{R}^n such that $\int_M |A|^2 < \infty$. An obvious consequence of the well-known results of Huber (see [15] and also [19]) is
- **2.5.1. Theorem.** M is conformally equivalent to a compact Riemannian surface with finitely many points deleted. If M is simply connected, then it is conformally equivalent to \mathbb{C} .

3. \mathcal{H}^1 -estimates

- **3.1.** We first recall the definition of the Hardy space $\mathcal{H}^1(\mathbf{R}^n)$. See [11] for details. Let ψ be a smooth compactly supported function on \mathbf{R}^n satisfying $\int_{\mathbf{R}^n} \psi = 1$. For $\varepsilon > 0$ we let $\psi_{\varepsilon}(x) = \varepsilon^{-n} \psi(\frac{x}{\varepsilon})$. Let $v \in L^1(\mathbf{R}^n)$. We set $v^*(x) = \sup_{\varepsilon > 0} |(\psi_{\varepsilon} * v)(x)|$. The Hardy space $\mathcal{H}^1(\mathbf{R}^n)$ consists of all $v \in L^1(\mathbf{R}^n)$ for which v^* is integrable. The norm $||\cdot||_{\mathcal{H}^1}$ is given by $||v||_{\mathcal{H}^1} = \int_{\mathbf{R}^n} v^*$. This definition is independent of ψ , modulo equivalence of norms.
- **3.2.** The following result (which follows from [11]) will play an important role throughout this paper. In what follows we addopt the usual convention and denote by c or C generic constants (whose values may change from line to line).
- **3.2.1. Theorem.** Let $\nu \in \mathcal{H}^1(\mathbf{C})$. Then the equation $\Delta u = \nu$ (considered in \mathbf{C}) admits a solution $u_0 : \mathbf{C} \to \mathbf{R}$ which is continuous,

belongs to $W_{loc}^{2,1}$, and satisfies:

$$\lim_{z \to \infty} u_0(z) = 0,$$

$$\int_{\mathbf{C}} |D^2 u_0| \le c||\nu||_{\mathcal{H}^1},$$

$$\left\{ \int_{\mathbf{C}} |D u_0|^2 \right\}^{\frac{1}{2}} \le c||\nu||_{\mathcal{H}^1}, \quad and$$

$$|u_0| \le c||\nu||_{\mathcal{H}^1} \quad in \ \mathbf{C}.$$

Proof. Let $\mathcal{H}^1_{00} \subset \mathcal{H}^1$ be the space of functions whose Fourier transform is a compactly supported smooth function with the support away from zero. Since $\mathcal{H}^1_{00} \subset \mathcal{H}^1$ is dense in \mathcal{H}^1 , see [32], p. 231, it is enough to consider the case $v \in \mathcal{H}^1_{00}$. For $v \in \mathcal{H}^1_{00}$ we define u_0 by $\hat{u}_0(\xi) = -\frac{\hat{\nu}(\xi)}{|\xi|^2}$ (where denotes the Fourier transform) and we note that u_0 belongs to the class \mathcal{S} of rapidly decreasing smooth functions (see [29], Chap. VII). We can use the results in [11], section 3, to obtain the first inequality. The second inequality follows from the standard Sobolev inequality $\{\int_{\mathbf{C}} |Dv|^2\}^{\frac{1}{2}} \leq \tilde{c} \int_{\mathbf{C}} |D^2v|$ which is valid for all $v \in \mathcal{S}$. Finally, writing $u(x) = \int_{-\infty}^{x_1} dy_1 \int_{-\infty}^{x_2} dy_2 \frac{\partial^2 u(y_1,y_2)}{\partial y_1 \partial y_2}$ we obtain the last estimate. (See also Adams [1], Lemma 5.8. for the imbedding of $W^{n,1}_{\text{loc}}(\mathbf{R}^n)$ into continuous functions.)

- **3.3.** We shall be using the following theorem:
- **3.3.1. Theorem.** ([7], see also [23].) Let $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ be a function belonging to $W^{1,n}(\mathbf{R}^n)$. Then $\det D\varphi$ belongs to $\mathcal{H}^1(\mathbf{R}^n)$ and

$$||\det D\varphi||_{\mathcal{H}^1} \le c||D\varphi||_{L^n}^n.$$

In this article we shall need \mathcal{H}^1 -estimates for v given by $v dx_1 \wedge dx_2 = \varphi^* \omega$, where $\varphi : \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ is a $W_0^{1,2}$ -function and ω the Kähler form on $\mathbf{P}^n(\mathbf{C})$. In what follows we shall (with some inaccuracy) identify $\varphi^* \omega$ with the function v given by $v dx_1 \wedge dx_2 = \varphi^* \omega$. The \mathcal{H}^1 -estimates of $\varphi^* \omega$ do not seem to be an obvious consequence of (3.3.1). There is, however, one situation, where (3.3.1) can be directly applied:

3.3.2. Corollary.Let $\varphi: \mathbf{C} \to \mathbf{S}^2 \subset \mathbf{R}^3$ be a function belonging to $W_0^{1,2}(\mathbf{C})$. Assume that there is $a \in \mathbf{S}^2$ and $\delta > 0$ such that $|\varphi - a| \geq \delta$ a.e. in \mathbf{C} . Let ω be the canonical volume form on \mathbf{S}^2 . Then $\varphi^*\omega \in \mathcal{H}^1(\mathbf{C})$ and

 $||\varphi^*\omega||_{\mathcal{H}^1} \le \frac{c}{\delta^2}||D\varphi||_{L^2}^2.$

Proof. We can assume that a = (0,0,-1). We consider the polar coordinates (ρ,ϑ) on \mathbf{S}^2 (given by $(\rho,\vartheta) \to (\sin\rho\cos\vartheta,\sin\rho\sin\vartheta,\cos\rho)$). Let (r,θ) be the polar coordinates in \mathbf{R}^2 and let $T:\mathbf{S}^2\setminus\{a\}\to\mathbf{R}^2$ be defined by $r=\sqrt{2(1-\cos\rho)}, \quad \theta=\vartheta$. Since T is volume-preserving, our statement follows from 3.3.1 by considering the mapping $T\circ\varphi$.

Theorems 3.2.1 and 3.3.1 imply that the solution of the equation $\Delta u = \det D\varphi$, where $\varphi \in W_0^{1,2}(\mathbf{R}^2, \mathbf{R}^2)$ are in fact more regular than standard estimates suggest. This fact was according to our knowledge first recognized by H. Wente in [38], where essentially the following theorem was proved. Our formulation incorporates a result from [3] regarding optimal constants. (See the appendix of [3].)

3.3.3. Theorem. Let $\varphi \in W_0^{1,2}(\mathbf{R}^2, \mathbf{R}^2)$. Then the equation $\Delta u = \det D\varphi$ (considered in \mathbf{R}^2) admits a solution which is continuous and satisfies:

$$\lim_{z \to \infty} u_0(z) = 0,$$

$$||Du_0||_{L^2(\mathbf{R}^2)} \le \frac{1}{8} \sqrt{\frac{3}{2\pi}} ||D\varphi||_{L^2(\mathbf{R}^2)}^2, \quad \text{and}$$

$$|u_0| \le \frac{1}{4\pi} ||D\varphi||_{L^2(\mathbf{R}^2)}^2 \quad \text{in } \mathbf{R}^2.$$

Proof. As we have mentioned above, this is a consequence of results in [38] and [3]. Appart from the numerical values of the constants in the estimates this also obviously follows from 3.2.1 and 3.3.1. The constant $\frac{1}{8}\sqrt{\frac{3}{2\pi}}$ in the estimate of $||Du_0||_{L^2}$ was obtained in [38], the constant $\frac{1}{4\pi}$ in the estimate of $|u_0|$ follows trivially from estimates obtained in [3].

3.4. Let us consider $\varphi: \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ belonging to $W_0^{1,2}(\mathbf{C}, \mathbf{P}^n(\mathbf{C}))$. We note that $\varphi^*\omega$ does not necessarily belong to \mathcal{H}^1 , since a necessary condition for $\varphi^*\omega \in \mathcal{H}^1$ is $\int_{\mathbf{C}} \varphi^*\omega = 0$. Assuming this and trying to prove $\varphi^*\omega \in \mathcal{H}^1$ following the method in [7], one finds that difficulties arise from the fact that ω is not exact. We can try to remove these difficulties by lifting φ to $F: \mathbf{C} \to \mathbf{S}^{2n+1} \subset \mathbf{C}^{n+1}$ (i.e. $\varphi = \pi \circ F$, where $\pi: \mathbf{S}^{2n+1} \to \mathbf{P}^n(\mathbf{C})$ is the canonical fibration) in such a way that we control the $W_0^{1,2}$ -norm of F. We shall see that this is possible.

We introduce the following notation: for $\varphi: \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ (belonging to $W_0^{1,2}(\mathbf{C}, \mathbf{P}^n(\mathbf{C}))$) we denote (with some inaccuracy) by $|D\varphi \wedge D\varphi|$ the area element induced on \mathbf{C} by φ . For n=1 we clearly have $2|D\varphi \wedge D\varphi| = |\varphi^*\omega|$. (Note that the volume form on $\mathbf{P}^1(\mathbf{C})$ is $\frac{1}{2}\omega$, where ω is the Kähler form on $\mathbf{P}^1(\mathbf{C})$.)

The Hermitian product on \mathbf{C}^k is denoted by $\langle \cdot \rangle$, i.e. $\langle z, w \rangle = \sum_{j=1}^{j=k} z_j \overline{w}_j$.

3.4.1. Proposition. Let $\varphi \in W_0^{1,2}(\mathbf{C}, \mathbf{P}^n(\mathbf{C}))$ and let $\varepsilon > 0$. Then there exists a smooth $\tilde{\varphi} : \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ which is constant outside a compact subset of \mathbf{C} and $\int_{\mathbf{C}} |D\varphi - D\tilde{\varphi}|^2 \leq \varepsilon$. (To make sense of the last integral, we consider $\mathbf{P}^n(\mathbf{C})$ as a submanifold of some \mathbf{R}^N .)

Proof. We recall that smooth functions are dense in $W^{1,2}(\mathbf{S}^2, \mathbf{P}^n(\mathbf{C}))$ by [33], Section 4. From this we see easily that also smooth functions which are constant in a neighbourhood of a given point (the neighbourhood can depend on the function) are dense in $W^{1,2}(\mathbf{S}^2, \mathbf{P}^n(\mathbf{C}))$. The proof is finished easily by using the stereographic projection $\mathbf{S}^2 \to \mathbf{C}$.

3.4.2. Proposition. Let $\varphi: \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ be smooth and constant outside a compact subset of \mathbf{C} . A necessary and sufficient condition for the existence of a smooth $F: \mathbf{C} \to \mathbf{S}^{2n+1}$ with $\varphi = \pi \circ F$ is that $\int_{\mathbf{C}} \varphi^* \omega = 0$.

Proof. This is well-known and follows easily for example from [31], Chapter 8.

3.4.3. Proposition. Let $\varphi : \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ be smooth and constant outside a compact subset of \mathbf{C} . Assume that $\int_{\mathbf{C}} \varphi^* \omega = 0$. Then there is a smooth lifting $F : \mathbf{C} \to \mathbf{S}^{2n+1}$ of φ , which minimizes $\int_{\mathbf{C}} |D\tilde{F}|^2$ among all liftings $\tilde{F} \in W_0^{1,2}(\mathbf{C}, \mathbf{S}^{2n+1})$ of φ . Moreover,

$$\int_{\mathbf{C}} |DF|^2 = \int_{\mathbf{C}} |D\varphi|^2 + ||\varphi^*\omega||_{W^{-1,2}}^2,$$

and F is unique up to the multiplication by a complex unity.

Proof. Let α be the 1-form on \mathbf{S}^{2n+1} defined at $z=(z_0,\ldots,z_n)\in\mathbf{S}^{2n+1}$ by $\alpha(\xi)=\operatorname{Re}\langle\xi,iz\rangle$ for each vector ξ from the tangent space $T_z\mathbf{S}^{2n+1}$. Since $\sum z_k\overline{z}_k=1$, we can also write $\alpha=\sum -i\overline{z}_k\,dz_k$. Clearly $d\alpha=\pi^*\omega$. Let \tilde{F} be any smooth lifting of φ . We decompose $\beta=\tilde{F}^*\alpha$ as $\beta=d\theta+*d\psi$, where θ and ψ are smooth functions of $W_0^{1,2}(\mathbf{C})$, which are uniquely determined up to constants. We note that $\int_{\mathbf{C}}|\beta|^2=\int_{\mathbf{C}}|d\theta|^2+\int_{\mathbf{C}}|d\psi|^2$. Since $d*d\psi=d\beta=\varphi^*\omega$, the function ψ depends only on φ (modulo a constant) and $\int_{\mathbf{C}}|d\psi|^2=||\varphi^*\omega||_{W^{-1,2}}^2$. We have $\int_{\mathbf{C}}|D\tilde{F}|^2=\int_{\mathbf{C}}|D\varphi|^2+\int_{\mathbf{C}}|\beta|^2$ and we see that $F=e^{-i\theta}\tilde{F}$ is the required minimizer. Now \tilde{F} determines θ uniquely up to a constant and hence F is unique up to the multiplication by a complex unity.

Remark. Proposition 3.4.3 is related to a well-known result of Uhlenbeck (see [37]) regarding the existence of good gauges. In our

situation the gauge group is SO(2) and our liftings correspond to the potentials A in [37]. The commutativity of SO(2) accounts for the fact that we can find the required lifting by solving the linear equation $d * d\psi = \varphi^* \omega$ above.

- **3.5.** We next aim to obtain estimates of $\varphi^*\omega$ in $W^{-1,2}$. Let (z_0,\ldots,z_n) be the homogeneous coordinates in $\mathbf{P}^n(\mathbf{C})$. Let $a\in\mathbf{P}^n(\mathbf{C})$ be a point with homogeneous coordinates (a_0,\ldots,a_n) . We shall denote by H_a the hyperplane in $\mathbf{P}^n(\mathbf{C})$ which is determined by the equation $\sum_{k=0}^{k=n}a_k\overline{z}_k=0$. We denote by $\hat{\mathbf{P}}^n(\mathbf{C})$ the manifold of all hyperplanes in $\mathbf{P}^n(\mathbf{C})$. We consider the standard metric on $\hat{\mathbf{P}}^n(\mathbf{C})$ which is defined so that the 1-1 correspondence $a\to H_a$ between $\mathbf{P}^n(\mathbf{C})$ and $\hat{\mathbf{P}}^n(\mathbf{C})$ is an isometry. We denote by μ the multiple of the standard 2n-dimensional measure on $\hat{\mathbf{P}}^n(\mathbf{C})$ for which $\mu(\hat{\mathbf{P}}^n(\mathbf{C}))=1$.
- **3.5.1.** For each hyperplane $H \in \hat{\mathbf{P}}^n(\mathbf{C})$ we define a one form α_H on $\mathbf{P}^n(\mathbf{C}) \setminus H$ in the following way. We consider the point $a \in \mathbf{P}^n(\mathbf{C})$ for which $H = H_a$ and we choose $A \in \pi^{-1}(a)$, where $\pi : \mathbf{S}^{2n+1} \to \mathbf{P}^n(\mathbf{C})$ is the canonical fibration. Let $s_H : \mathbf{P}^n(\mathbf{C}) \setminus H \to \mathbf{S}^{2n+1}$ be the section which is determined by $s_H(a) = A$ and by the condition that for each geodesics in $\mathbf{P}^n(\mathbf{C}) \setminus H$ passing through the point a its image under s_H is perpendicular to the fibres. (If H is given by the equation $z_0 = 0$, $A = (1,0,\ldots,0)$ and $z \in \mathbf{P}^n(\mathbf{C}) \setminus H$ has homogeneous coordinates $(z_0,\ldots,z_n) \in \mathbf{S}^{2n+1}$, then $s_H(z) = \left(|z_0|,\frac{|z_0|}{z_0}z_1,\ldots,\frac{|z_0|}{z_0}z_n\right)$. We recall that the one-form α on \mathbf{S}^{2n+1} is defined as $\alpha = -i\sum_{k=0}^{k=n} \overline{z}_k dz_k$ and we set $\alpha_H = s_H^*\alpha$. (This definition is clearly independent of the choice of A in the fibre $\pi^{-1}(a)$.) Clearly $d\alpha_H = \omega$ in $\mathbf{P}^n(\mathbf{C}) \setminus H$ and it is easy to check that for each $z \in \mathbf{P}^n(\mathbf{C}) \setminus H$ we have $|\alpha_H(z)| = \text{cotan dist}(z, H)$.
- **3.5.2.** We recall that for $0 < r < \pi/2$ the volume of the ball $B_{a,r} = \{z \in \mathbf{P}^n(\mathbf{C}), \operatorname{dist}(a,z) < r\}$ is given by $\operatorname{Vol}(B_{a,r}) = \frac{\alpha(2n-1)}{2n} \sin^{2n} r$, where $\alpha(m)$ denotes the standard m-dimensional measure of \mathbf{S}^m . (See, for example [13], Chapter I.4, p. 168.) For a hyperplane $H \subset \mathbf{P}^n(\mathbf{C})$ and $0 < r < \pi/2$ we let $H_{(r)} = \{z \in \mathbf{P}^n(\mathbf{C}), \operatorname{dist}(z, H) < r\}$. Since $\mathbf{P}^n(\mathbf{C}) \setminus H_{(r)}$ is a closed ball of radius $\pi/2 r$ (see, for example [13], Chapter I.4.2) we have $\operatorname{Vol}(H_{(r)}) = \frac{\alpha(2n-1)}{2n}(1 \cos^{2n} r)$.

In what follows we shall use the notation #S for the number of elements of a set S.

3.5.3. Lemma. Let $\varphi: \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ be a smooth mapping belonging

to $W_0^{1,2}(\mathbf{C}, \mathbf{P}^n(\mathbf{C}))$. Then

$$\pi \int_{\hat{\mathbf{P}}^n(\mathbf{C})} \# \varphi^{-1}(H) \, d\mu(H) \le \int_{\mathbf{C}} |D\varphi \wedge D\varphi|$$

Proof. This is an easy consequence of the general integral-geometric formula in [4], Theorem 5.5. (The formula from [4] can be directly applied to images of balls $B \subset \mathbb{C}$ for which the restriction of φ to B is an embedding. The general case follows by the standard application of Sard's theorem and an easy covering argument. See, for example [10], the proof of Theorem 3.2.3.)

3.5.4. Lemma. Let $\varphi : \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ be smooth and constant outside a compact subset of \mathbf{C} . If $\int \varphi^* \omega = 0$, then $\# \varphi^{-1}(H)$ is even for a.e. $H \in \hat{\mathbf{P}}^n(\mathbf{C})$.

Proof. Since $\int_{\mathbf{C}} \varphi^* \omega = 0$, the mapping φ is homotopic to a constant mapping. (See, for example, [31], Chapter 8.) If H is such that φ is transversal to H, then $\#\varphi^{-1}(H)$ is even by the standard intersection theory. (See, for example, [14].) A standard application of Sard's theorem and easy dimension arguments show that φ is transversal to a.e. $H \in \hat{\mathbf{P}}^n(\mathbf{C})$.

3.5.5. Proposition. Let $0 < \varepsilon < 1$. Let $\varphi \in W_0^{1,2}(\mathbf{C}, \mathbf{P}^n(\mathbf{C}))$ and assume that $\int_{\mathbf{C}} \varphi^* \omega = 0$ and that $\int_{\mathbf{C}} |D\varphi \wedge D\varphi| \leq 2\pi\varepsilon$. Then $||\varphi^* \omega||_{W^{-1,2}} \leq \frac{2n(1-\varepsilon^{\frac{1}{n}})^{\frac{1}{2}}}{1-\varepsilon}||D\varphi||_{L^2}$.

Proof. It is clearly enough to prove the estimate under the assumption $\int_{\mathbf{C}} |D\varphi \wedge D\varphi| < 2\pi\varepsilon$. Using 3.4.1 we see that we can also assume that φ is smooth and constant outside a compact subset of \mathbf{C} . From 3.5.3 and 3.5.4 we see that there is a closed set $E \subset \hat{\mathbf{P}}^n(\mathbf{C})$ with $\mu(E) = 1 - \varepsilon$ such that $\varphi^{-1}(H) = \emptyset$ for each $H \in E$. Let $\tilde{E} \subset \mathbf{P}^n(\mathbf{C})$ be the union of all hyperplanes of E. We note that \tilde{E} is closed and that $\varphi(\mathbf{C}) \subset \mathbf{P}^n(\mathbf{C}) \setminus \tilde{E}$. We define a one form α_E on $\mathbf{P}^n(\mathbf{C}) \setminus \tilde{E}$ by $\alpha_E = \frac{1}{\mu(E)} \int_E \alpha_H d\mu(H)$, where α_H is defined in 3.5.1. (In fact this formula defines α_E well also on \tilde{E} , but we will not need this.) Clearly α_E is smooth in $\mathbf{P}^n(\mathbf{C}) \setminus \tilde{E}$ and satisfies $|\alpha_E(z)| \leq \frac{1}{\mu(E)} \int_E \cot$ dist $(z, H) d\mu(H)$ for each $z \in \mathbf{P}^n(\mathbf{C}) \setminus \tilde{E}$. Since $d\alpha_H = \omega$ in $\mathbf{P}^n(\mathbf{C}) \setminus H$, we have $d\alpha_E = \omega$ in $\mathbf{P}^n(\mathbf{C}) \setminus \tilde{E}$. Let $0 < \delta < \pi/2$ be such that $\mu(E) = 1 - \varepsilon = 1 - \cos^{2n} \delta$. For $z \in \mathbf{P}^n(\mathbf{C})$ let $E_{z,\delta} = \{H \in \hat{\mathbf{P}}^n(\mathbf{C}); \operatorname{dist}(z, H) < \delta\}$ and let \hat{z} be the hyperplane in

 $\hat{\mathbf{P}}^n(\mathbf{C})$ consisting of all hyperplanes in $\mathbf{P}^n(\mathbf{C})$ passing through z. Since clearly $\operatorname{dist}(z,H) = \operatorname{dist}_{\mathbf{p}_n}(H,\hat{z})$, where $\operatorname{dist}_{\mathbf{p}_n}$ denotes the distance in $\hat{\mathbf{P}}^n(\mathbf{C})$, we see from 3.5.2 that $\mu(E_{z,\delta}) = 1 - \cos^{2n} \delta = \mu(E)$. It is not difficult to see that for each $z \in \mathbf{P}^n(\mathbf{C})$ we have

$$\frac{1}{\mu(E)} \int_{E} \cot \operatorname{adist}(z, H) \, d\mu(H) \le$$

$$\frac{1}{\mu(E_{z,\delta})} \int_{E_{z,\delta}} \cot \operatorname{adist}_{\mathbf{P}^{n}}(H, \hat{z}) \, d\mu(H).$$

Using the formulae in 3.5.2 and the isometry of $\mathbf{P}^n(\mathbf{C})$ and $\hat{\mathbf{P}}^n(\mathbf{C})$ we see that the last integral is equal to $2n \int_0^{\delta} \cos^{2n} t \, dt \leq 2n \sin \delta =$ $2n(1-\varepsilon^{\frac{1}{n}})^{\frac{1}{2}}$. Hence $|\alpha_E| \leq \frac{2n(1-\varepsilon^{\frac{1}{n}})^{\frac{1}{2}}}{1-\varepsilon}$ in $\mathbf{P}^n(\mathbf{C}) \setminus \tilde{E}$. We have $\varphi(\mathbf{C}) \subset$ $\mathbf{P}^n(\mathbf{C}) \setminus \tilde{E}$ and $\varphi^*\omega = \varphi^*d\alpha_E = d\varphi^*\alpha_E$. Since $|\varphi^*\alpha_E| \leq |\alpha_E| |D\varphi|$, the result follows.

3.5.6. Theorem. Let $0 < \varepsilon < 1$. Let $\varphi \in W_0^{1,2}(\mathbf{C}, \mathbf{P}^n(\mathbf{C}))$ and assume that $\int_{\mathbf{C}} \varphi^* \omega = 0$ and that $\int_{\mathbf{C}} |D\varphi \wedge D\varphi| \leq 2\pi \varepsilon$. Let $\pi: \mathbf{S}^{2n+1} \to \mathbf{S}^{2n+1}$ $\mathbf{P}^n(\mathbf{C})$ be the canonical fibration. Then there exists $F \in W_0^{1,2}(\mathbf{C}, \mathbf{S}^{2n+1})$ so that $\pi \circ F = \varphi$ and $||DF||_{L^2}^2 \leq C(n,\varepsilon)||D\varphi||_{L^2}^2$, where $C(n,\varepsilon) =$ $1 + \frac{4n^2(1-\varepsilon^{\frac{1}{n}})}{(1-\varepsilon)^2}.$ *Proof.* This follows directly from 3.4.3 and 3.5.5.

3.5.7. Corollary. Under the assumptions of 3.5.6 we have $\varphi^*\omega \in$ \mathcal{H}^1 with $\|\varphi^*\omega\|_{\mathcal{H}^1} \leq c_1 C(n,\varepsilon) \|D\varphi\|_{L^2}^2$, where $C(n,\varepsilon) = 1 + \frac{4n^2(1-\varepsilon^{\frac{1}{n}})}{(1-\varepsilon)^2}$ and c_1 is independent of n and ε . Moreover, the equation $\Delta u = \varphi^* \omega$ (considered in C) admits a solution $u_0: \mathbf{C} \to \mathbf{R}$ which is continuous and satisfies:

$$\lim_{z \to \infty} u_0(z) = 0,$$

$$\int_{\mathbf{C}} |D^2 u_0| \le c_2 C(n, \varepsilon) ||D\varphi||_{L^2}^2,$$

$$\left\{ \int_{\mathbf{C}} |D u_0|^2 \right\}^{\frac{1}{2}} \le \frac{1}{4} \sqrt{\frac{3}{2\pi}} C(n, \varepsilon) ||D\varphi||_{L^2}^2, \quad and$$

$$|u_0| \le \frac{1}{2\pi} C(n, \varepsilon) ||D\varphi||_{L^2}^2 \quad in \ \mathbf{C},$$

where $C(n,\varepsilon)$ is as in Theorem 3.5.6 and c_2 is independent of n and $\varepsilon.$

Proof. Let $F: \mathbb{C} \to \mathbb{S}^{2n+1} \subset \mathbb{C}^{n+1}$ be the lifting from (3.5.6). We can write $F = (F_0, \dots, F_n)$ where F_k are C-valued functions on C. We have $\varphi^*\omega = F^*\pi^*\omega = i\sum_{k=0}^{k=n} dF_k \wedge d\overline{F}_k$. We can now use (3.2.1), (3.3.1) and (3.3.3) and the results follow.

Easy examples show that without the assumption $\int_{\mathbf{C}} |D\varphi \wedge D\varphi| \le 2\pi\varepsilon$ in 3.5.5 we cannot expect a bound for $||\varphi^*\omega||_{W^{-1,2}}$ which would depend only on $||D\varphi||_{L^2}$. In view of this, the following result is more or less optimal.

3.5.8. Proposition. Let $\varphi \in W_0^{1,2}(\mathbf{C}, \mathbf{P}^n(\mathbf{C}))$ with $\int_{\mathbf{C}} \varphi^* \omega = 0$. Then $\varphi^* \omega \in W^{-1,2}(\mathbf{C})$ and the norm $||\varphi^* \omega||_{W^{-1,2}}$ can be estimated in terms of $||D\varphi||_{L^2}$ and the modulus of continuity of the measure $|D\varphi \wedge D\varphi|$. More precisely, let $\tau : \mathbf{C} \to \mathbf{S}^2$ be the stereographic projection and let $0 < \varepsilon < 1$ and r > 0 be such that $\int_{\tau^{-1}(B)} |D\varphi \wedge D\varphi| \le \pi \varepsilon$ for each ball $B \subset \mathbf{S}^2$ of radius $\le r$. Then $||\varphi^* \omega||_{W^{-1,2}} \le c(n, r, \varepsilon)||D\varphi||_{L^2}$.

Proof. Let us fix $0 < \varepsilon < 1$ and r > 0. Using 3.4.1 we see that it is enough to prove the estimate $||\varphi^*\omega||_{W^{-1,2}} \le c(n,r,\varepsilon)||D\varphi||_{L^2}$ under the assumption that φ is smooth, constant outside a compact subset of \mathbf{C} , and satisfies $\int_{\tau^{-1}(B)} |D\varphi \wedge D\varphi| \le \pi\varepsilon$ for each ball $B \subset \mathbf{S}^2$ of radius $\le r$. Let $1 = \tilde{\eta}_1 + \cdots + \tilde{\eta}_m$ be a partition of unity on \mathbf{S}^2 such that diam (supp $\tilde{\eta}_k$) $\le r$ for each k and that $\tilde{\eta}_2 = \cdots = \tilde{\eta}_m = 0$ in a neighbourhood of the north pole ($=\infty$). Let $\eta_k = \tilde{\eta}_k \circ \tau$ and let $E_k = \sup \eta_k$. We can clearly assume $\int_{E_k} |D\varphi \wedge D\varphi| < \pi\varepsilon$ and, proceeding in a similar way as in the proof of 3.5.5 (the main difference is that we no longer know that $\#\varphi^{-1}(H) \cap E_k$ is even), we can find for each $k = 1, \ldots, m$ a one-form α_k with $|\alpha_k| \le \frac{2n(1-\varepsilon^{\frac{1}{n}})^{\frac{1}{2}}}{1-\varepsilon}$ and $d\alpha_k = \omega$ in a neighbourhood of $\varphi(E_k)$. We have

$$\varphi^*\omega = \Sigma \eta_k \varphi^*\omega = \Sigma \eta_k \varphi^*(d\alpha_k) = \Sigma d(\eta_k \varphi^*\alpha_k) - \Sigma d\eta_k \wedge \varphi^*\alpha_k.$$

Since $\Sigma |(\eta_k \varphi^* \alpha_k)| \leq \frac{2n(1-\varepsilon^{\frac{1}{n}})^{\frac{1}{2}}}{1-\varepsilon} |D\varphi|$ in \mathbf{C} , we see that the $W^{-1,2}$ -norm of $\Sigma d(\eta_k \varphi^* \alpha_k)$ can be controlled in the required way. We can choose our partition of unity so that we controll the L^2 -norm of $\Sigma d\eta_k \wedge \varphi^* \alpha_k$ and also diameter of the support of this function by quantities depending only on r, ε , and n. Since we also have $\int_{\mathbf{C}} \Sigma d\eta_k \wedge \varphi^* \alpha_k = 0$, we see that the $W^{-1,2}$ -norm of $\Sigma d\eta_k \wedge \varphi^* \alpha_k$ can be controlled in the required way. The proof is finished.

Remark. Let X be a compact Riemannian manifold and let ω be a closed n-form on X. Let $\varphi : \mathbf{R}^n \to X$ be a function belonging

to $W_0^{1,n}(\mathbf{R}^n,X)$ such that $\int_{\mathbf{R}^n} \varphi^* \omega = 0$. It is natural to ask whether one can obtain estimates of $\varphi^* \omega$ in $\mathcal{H}^1(\mathbf{R}^n)$ in this general situation. Results in this direction have been recently obtained by Malý [21].

4. Estimates for conformal maps of punctured discs

Throughout this section M denotes a complete, connected, noncompact, oriented two-dimensional manifold immersed in \mathbf{R}^n with second fundamental form A satisfying $\int_M |A|^2 < +\infty$. By Huber's result (see 2.5.1), M can be parametrized by a conformal mapping $\tilde{f}: S \setminus \{a_1,\ldots,a_q\} \to M \hookrightarrow \mathbf{R}^n$, where S is a compact Riemannian surface. Our goal in this section is to study the behaviour of \tilde{f} near the "ends" a_i . Passing to local charts, this reduces to the study of conformal maps into M which are defined on punctured discs. In fact we find it more convenient to move the singularity from 0 to ∞ and thus to deal with maps,

$$f: \Omega^* \to \Sigma \subset M \hookrightarrow \mathbf{R}^n$$

where

$$\Omega^* = \{ z \in \mathbf{C} : |z| > 1 \}.$$

We shall also use the notation $\Omega_r^* = r\Omega^*$.

4.1.1. Definition. We say that a metric g on Ω_r^* is complete at ∞ if $\operatorname{dist}_g(z_0, z) \to \infty$ when $z \to \infty$ for some (and hence all) $z_0 \in \Omega_r^*$.

The results of this section may be summarized as follows. The map f behaves, in a sense to be made precise, like z^m (where $m \in \mathbb{N}$) as $z \to \infty$ and hence we can associate to each end a_i its multiplicity m_i . One has $\tilde{f}(z) \to \infty$ (in \mathbb{R}^n) as $z \to a_i$ which proves White's [39] conjecture that M is properly immersed. Moreover we show that there exists constants c_i such that the induced metric $(Df)^t(Df)(z)$ on Ω^* is of the form $c_i|z|^{2m_i-2}\delta_{kl}+o(|z|^{2m_i-2})$ as $z\to\infty$. In view of a result of Shiohama [30] (or Li and Tam [19]) this implies that

$$\int_M K = 2\pi (\chi_M - \sum_{i=1}^q m_i),$$

where χ_M denotes the Euler characteristic. Note that $\sum m_i$ can be thought of as the total number of ends (counted with multiplicity). We

finally show that if $\int_M |A|^2 \le 4\pi$ or if n = 3 and $\int_M |A|^2 < 8\pi$ then the conformal type of M is \mathbb{C} and M is embedded.

4.1.2. Lemma. Let $H: \Omega^* \to \mathbf{R}$ be a harmonic function. The metric $e^{2H}\delta_{ij}$ is complete at ∞ if and only if

$$H(z) = \alpha \log |z| + h(z),$$

where $h: \Omega^* \to \mathbf{R}$ is harmonic and bounded at ∞ and where $\alpha \geq -1$. Proof. Only the "only if" part of the statement is nontrivial. Assume that $e^{2H}\delta_{ij}$ is complete at ∞ and let

$$\alpha = \frac{1}{2\pi} \int_{\Gamma} *dH$$
, where $\Gamma = \{z \in \mathbf{C} : |z| = 2\}$.

Set $h(z) = H(z) - \alpha \log |z|$. Let $\Phi : \Omega^* \to \mathbf{C}$ be a holomorphic function with Re $\Phi = h$ (such a function exists since h is harmonic and $\int_{\Gamma} *dh = 0$). Let P be a non-zero polynomial of degree $\geq \alpha$ such that $\int_{\Gamma} P(z)e^{\Phi(z)}dz = 0$. Since degree $P \geq \alpha$ and $e^{2H}\delta_{ij}$ is complete at ∞ , the metric $|Pe^{\Phi}|^2\delta_{ij}$ is complete at ∞ .

Let $F: \Omega^* \to \mathbf{C}$ be a holomorphic function with $F' = Pe^{\Phi}$ (which exists since $\int_{\Gamma} P(z)e^{\Phi(z)}dz = 0$). We prove that F cannot have an essential singularity at ∞ . Arguing by contradiction, assume that F has an essential singularity at ∞ . Let us consider a sufficiently large r > 0 such that $F' \neq 0$ in Ω_r^* . A standard application of the monodromy theorem and of the implicit function theorem shows that we cannot have $F(\Omega_r^*) = \mathbf{C}$. Since F has an essential singularity at ∞ Picard's theorem then implies that there is a $w_0 \in \mathbf{C}$ such that $F(\Omega_s^*) = \mathbf{C} \setminus \{w_0\}$ for each s > r.

Let $w_1 \neq w_0$ be such that the segment $[w_0, w_1]$ does not intersect the (compact) set $F(\partial \Omega_s^*)$ for some s > r. Considering a connected component of $F^{-1}([w_0, w_1])$ which is contained in Ω_s^* , we see that $|F'|^2 \delta_{ij}$ is not complete at ∞ , a contradiction. Since F thus cannot have an essential singularity at ∞ , Φ must be bounded at ∞ and the proof is easily finished.

4.2.1. Theorem. Let $\Sigma \hookrightarrow \mathbf{R}^n$ be a surface immersed into \mathbf{R}^n . Assume that Σ is conformally equivalent to Ω^* and let $f: \Omega^* \to \Sigma$ be a conformal parametrization for Σ , with $|f_{x_1}| = |f_{x_2}| = e^u$. Let $\varphi: \Omega^* \to \mathbf{G}_{n,2} \subset \mathbf{P}^{n-1}(\mathbf{C})$ be defined by $\varphi = G \circ f$ where G is the

Gauss map. Assume that

$$\int_{\Omega^*} |D\varphi \wedge D\varphi| \leq \pi/2, \quad \text{ and } \quad \int_{\Omega^*} |D\varphi|^2 = \frac{1}{2} \int_{\Sigma} |A|^2 < \infty.$$

Then

$$u(z) = u_0(z) + H(z),$$

where $H: \Omega^* \to \mathbf{R}$ is harmonic and $u_0: \Omega^* \to \mathbf{R}$ is a (smooth) function which satisfies:

$$(4.2.2) \qquad \lim_{z\to\infty}u_0(z)=0, \quad \text{and} \quad |u_0|\leq c\int_{\Sigma}|A|^2 \quad \text{in} \quad \Omega^*, \quad .$$

(4.2.3)
$$\left\{ \int_{\Omega^*} |Du_0|^2 \right\}^{1/2} \le c \int_{\Sigma} |A|^2,$$
$$\int_{\Omega^*} |D^2 u_0| \le c \int_{\Sigma} |A|^2.$$

If moreover the metric $e^{2u}\delta_{ij}$ is complete at ∞ , then

$$H(z) = (m-1)\log|z| + h(z),$$

where $m \geq 1$ is an integer and h is a harmonic function bounded at ∞ , and we also have

$$\lim_{z \to \infty} \frac{|f(z)|}{|z|^m} = \frac{e^{\lambda}}{m},$$

where $\lambda = \lim_{z \to \infty} h(z)$.

- **4.2.4. Definition.** In the situation of 4.2.1, when $e^{2u}\delta_{ij}$ is complete, Σ is a surface (with boundary) which has one end and we shall refer to the number m as the multiplicity of the end. For a manifold M as in the beginning of this section with conformal parametrization \tilde{f} : $S \setminus \{a_1, \ldots, a_n\} \to M$ one assigns a multiplicity m_i to each end a_i by passing to local charts. (Clearly m_i does not depent on the particular choice of the conformal parametrization or the local chart.)
- **4.2.5.** Corollary. Let $M \hookrightarrow \mathbb{R}^n$ be a two-dimensional manifold as in the beginning of this section. Then for each $x_0 \in M$

$$\lim_{\mathrm{dist}_M(x_0,x)\to\infty}\frac{\mathrm{dist}_M(x_0,x)}{|x_0-x|}=1.$$

Moreover, one has the Gauss-Bonnet formula

$$\int_M K = 2\pi (\chi_M - \sum_{i=1}^q m_i),$$

where m_i is the multiplicity of the end a_i . If $\int_M K = 0$, then M is conformally equivalent to \mathbb{C} .

Proof of Corollary 4.2.5. Let us consider a conformal parametrization $\tilde{f}: S\setminus\{a_1,\ldots,a_q\}\to M\hookrightarrow \mathbf{R}^n$, where S is a compact Riemannian surface. The existence of such parametrizations follows from Theorem 2.5.1. Let us choose punctured neighbourhoods U_i of the points a_i which are conformally equivalent to Ω^* . Let us fix points $b_i\in U_i$. Using Theorem 4.2.1 (more specifically, we use (4.2.2), the formula for H in the case when $e^{2u}\delta_{ij}$ is complete at ∞ and the formula for $\lim_{z\to\infty}\frac{|f(z)|}{|z|^m}$) we see that, for each $i=1,\ldots,q$

$$\lim_{z \to a_i} \frac{\operatorname{dist}_M(\tilde{f}(b_i), \tilde{f}(z))}{|\tilde{f}(b_i) - \tilde{f}(z)|} = 1.$$

Since $S \setminus \bigcup_{j=1}^{j=q} U_j$ is compact, the first statement follows easily.

To prove the Gauss-Bonnet formula we fix $x_0 \in M$ and we denote by A(r) the area of the geodesic ball of radius r centered at x_0 . In [30] it has been shown (see also [19]) that

$$2\lim_{r\to\infty}\frac{A(r)}{r^2}=2\pi\chi_M-\int_MK.$$

Applying Theorem 4.2.1 (in a similar way as in the proof of the first statement) at each end a_i we obtain

$$\lim_{r \to \infty} \frac{A(r)}{r^2} = \pi \sum_{i=1}^q m_i,$$

and the formula follows.

If $\int_M K = 0$, then $\chi(M) = \sum_{i=1}^q m_i \ge 1$. On the other hand, we have $\chi(M) \le 1$ since M is noncompact and connected. Hence $\chi(M) = \sum_{i=1}^q m_i = 1$ and we see that M is homeomorphic to \mathbb{C} . By Huber's result (see 2.5.1) the proof is finished.

Proof of Theorem 4.2.1. We extend φ to \mathbb{C} by $\varphi(z) = \varphi(\frac{1}{z})$. Since

$$\int_{\mathbf{C}} \varphi^* \omega = 0, \quad \int_{\mathbf{C}} |D\varphi \wedge D\varphi| = 2 \int_{\Omega^*} |D\varphi \wedge D\varphi| \quad \text{and} \quad$$

$$\int_{\mathbf{C}} |D\varphi|^2 = 2 \int_{\Omega^*} |D\varphi|^2,$$

we see from Corollary 3.5.7 that we can find u_0 with $-\Delta u_0 = \varphi^* \omega$ in \mathbb{C} which satisfies (4.2.2) and (4.2.3). The function $H = u - u_0$ is clearly harmonic in Ω^* . If $e^{2u}\delta_{ij}$ is complete at ∞ , then in view of (4.2.2) $e^{2H}\delta_{ij}$ is also complete at ∞ and from Lemma 4.1.2 we see that

(4.2.6)
$$H(z) = \alpha \log |z| + h(z), \text{ where } \alpha \ge -1,$$

and where h is harmonic and bounded at ∞ .

We now prove that α is a nonnegative integer. For $\varepsilon>0$ and $z\in\Omega^*_\varepsilon$ we let

$$f_{\varepsilon}(z) = \varepsilon^{\alpha+1} [f(z/\varepsilon) - f(2/\varepsilon)].$$

We also let $\varphi_{\varepsilon}(z) = \varphi(z/\varepsilon)$, and $u_{\varepsilon}(z) = \log|f_{\varepsilon x_1}(z)| = \log|f_{\varepsilon x_2}(z)| = u_0(z/\varepsilon) + \alpha \log|z| + h(z/\varepsilon)$. For each $0 < \varepsilon < r$ we have $\int_{\Omega_r^*} |D\varphi_{\varepsilon}|^2 = \int_{\Omega_{r/\varepsilon}^*} |D\varphi|^2 \to 0$ as $\varepsilon \to 0$. We also have for each compact set $K \subset \mathbb{C} \setminus \{0\}$ and ε sufficiently small (so that $K \subset \Omega_{\varepsilon}^*$) the equality $\int_K |Du_{\varepsilon}|^2 = \int_{\frac{1}{\varepsilon}K} |Du|^2$. These equalities and Lemma 4.2.7 below also show that, for small ε the integral $\int_K |D^2 f_{\varepsilon}|^2$ is bounded independently of ε . Using these estimates we infer that there exists a sequence $\varepsilon_k \to 0$ with the following properties:

- (i) There exists $L \in \mathbf{G}_{n,2}$ such that $\varphi_{\varepsilon_k} \to L$ in $W_{\mathrm{loc}}^{1,2}(\mathbf{C} \setminus \{0\})$.
- (ii) the maps f_{ε_k} converge uniformly on compact subsets of $\mathbb{C} \setminus \{0\}$ to a conformal mapping $f_0 : \mathbb{C} \setminus \{0\} \to L \subset \mathbb{R}^n$ which satisfies $|f_{0x_i}(z)| = e^{\lambda}|z|^{\alpha}$ with $\lambda = \lim_{z \to \infty} h(z)$. (This limit exists as h is harmonic and bounded at ∞ .)

Identifying L (as an oriented subspace) with \mathbf{C} , we can consider f_0 as a holomorphic function on $\mathbf{C} \setminus \{0\}$. We have $|f_0'(z)| = e^{\lambda}|z|^{\alpha}$ and therefore α is an integer $\neq -1$. Since $\alpha \geq -1$, we see that α is a nonnegative integer.

To prove the last statement of the theorem, we note that the function f_0 is of the form $f_0(z) = a \frac{e^{\lambda}}{\alpha+1} z^{\alpha+1} + c$, where |a| = 1. Using the locally uniform convergence in (ii), we see that $\lim_{z \to \infty} \frac{|f(z)|}{|z|^{\alpha+1}} = \frac{e^{\lambda}}{\alpha+1}$ will follow if we show that $\varepsilon^{\alpha+1}|f(\frac{2}{\varepsilon})|$ is bounded as $\varepsilon \to 0$. We have $f(\frac{2}{\varepsilon}) = f(2) + \int_2^{2/\varepsilon} f_{x_1}(s) \, ds$. Since $|f_{x_1}(z)|$ is bounded by $\tilde{c}e^{\lambda}|z|^{\alpha}$ for some $\tilde{c} > 0$ and we know that $\alpha \geq 0$, the result follows easily.

4.2.7. Lemma. The conformal parametrization $f: \Omega^* \to \Sigma \hookrightarrow \mathbf{R}^n$ of Σ satisfies

$$|D^2f|^2 = e^{2u}(4|Du|^2 + 2|D\varphi|^2)$$

(pointwise) in Ω^* .

Proof. This is obtained easily by taking derivatives of $e^{2u}\delta_{ij} = f_{x_i} \cdot f_{x_j}$ and of $\varphi = \frac{1}{\sqrt{2}}e^{-2u}(f_{x_i} \wedge f_{x_j})$.

The following lemma relates the intrinsic and the extrinsic geometry of Σ .

4.2.8. Lemma. Let Q be a square and assume that $f: Q \to \Sigma$ is a conformal parametrization of a surface Σ immersed into \mathbb{R}^n . As before let $|f_{x_1}| = |f_{x_2}| = e^u$ and $\varphi = G \circ f$, where G is the Gauss map of Σ . Assume that

$$\beta - \varepsilon_1 \le u \le \beta + \varepsilon_1$$
 on Q for some $\beta \in \mathbf{R}$ and $\varepsilon_1 > 0$,

and that

$$\int_{Q} (2|D\varphi|^2 + 4|Du|^2) < \varepsilon_2^2 e^{-2\varepsilon_1} \text{ for some } 0 < \varepsilon_2 < \sqrt{\frac{\pi \tanh \pi}{2}} e^{-\varepsilon_1}.$$

Let z_1, z_2 be two neighbouring vertexes of Q and denote by d_{Σ} the intrinsic distance on Σ . Then

$$d_{\Sigma}(f(z_1),f(z_2)) \leq \sqrt{1+\frac{2\varepsilon_2^2e^{2\varepsilon_1}}{\pi\tanh\pi}}|f(z_1)-f(z_2)|.$$

Remark. In [26] Semmes proved (for the codimension one case) the deeper result that a similar estimate for d_{Σ} holds under the weaker assumption that the Gauss map is small in BMO.

Proof. Changing f(z) to $\frac{e^{-\beta}}{|a|}f(az+b)$ if necessary, we may assume that $\beta=0, Q=[0,1]\times[0,1], z_1=0$ and $z_2=1$. Let

$$g(t) = f_{x_1}(t), \quad \mathbf{A} = \int_0^1 g, \quad A = |\mathbf{A}|, \quad B = \int_0^1 |g|.$$

Then

$$B^2 \le \int_0^1 |g|^2 = A^2 + \int_0^1 |g - \mathbf{A}|^2$$

By standard results about traces (applied to the function $h(x,y) = g(x,y) - \int_0^1 g(x,y) dx$) one has

$$(4.2.9) \int_0^1 |g - \mathbf{A}|^2 \le \frac{1}{\pi \tanh \pi} \int_Q |Dg|^2 \le \frac{1}{\pi \tanh \pi} \int_Q |D^2 f|^2.$$

(This can be seen, for example from the fact that $||h||_{L^2(Q)} \le \pi^{-1}||g_x||_{L^2(Q)}$ and $||h(\cdot,0)||_{L^2}^2 \le \frac{\pi}{\tanh \pi}(||h||_{L^2(Q)}^2 + \pi^{-2}||h_y||_{L^2(Q)}^2).)$ We infer that

$$B^2 - A^2 \le \frac{1}{\pi \tanh \pi} ||D^2 f||_{L^2(Q)}^2.$$

Now $B^2 \ge e^{-2\varepsilon_1}$ and $||D^2 f||_{L^2(Q)} \le \varepsilon_2$ (by Lemma 4.2.7) and hence $A^2 \ge e^{-2\varepsilon_1} - \frac{1}{\pi \tanh \pi} \varepsilon_2^2 \ge e^{-2\varepsilon_1}/2$. Thus

$$\frac{B}{A} \le \sqrt{1 + \frac{2\varepsilon_2^2 e^{2\varepsilon_1}}{\pi \tanh \pi}}$$

and the result follows.

To end this subsection we discuss in what sense the end of Σ behaves like $z \to z^m$. Let $\pi: X_m \to \Omega^*$ be the m-fold covering of Ω^* by a connected surface X_m . As usual, we consider X_m with the metric $\pi^*\delta_{ij}$ (where δ_{ij} denotes the standard metric on Ω^*).

Let $f: \Omega^* \to \Sigma$ be the conformal parametrization considered above. We have seen that the constant α in (4.2.6) is a nonnegative integer. We let $m = \alpha + 1$ and for $\xi \in X_m$ we set $\tilde{f}(\xi) = f(\xi^{1/m})$, where the C-valued function $\xi \to \xi^{1/m}$ on X_m is defined in the usual way. Clearly \tilde{f} is a conformal parametrization of Σ and \tilde{u} defined by $|D\tilde{f}|^2 = 2e^{2\tilde{u}}$ satisfies

$$\tilde{u}(\xi) = \tilde{u}_0(\xi) + \tilde{h}(\xi) - \log m,$$

where $\tilde{u}_0(\xi) = u_0(\xi^{1/m})$ and $\tilde{h}(\xi) = h(\xi^{1/m})$.

4.2.10. Proposition. For each $\varepsilon > 0$ there exists R > 0 such that the following statement holds. If $Q \subset \Omega^*$ is a square such that $Q \cap \{z \in \mathbf{C} : |z| \leq R\} = \emptyset$ and if $\xi_1, \xi_2 \in X_m$ are neighbouring vertices of a connected component of $\pi^{-1}(Q)$, then

$$\frac{e^{\lambda}}{m}(1-\varepsilon)|\xi_1-\xi_2| \leq |\tilde{f}(\xi_1)-\tilde{f}(\xi_2)| \leq \frac{e^{\lambda}}{m}(1+\varepsilon)|\xi_1-\xi_2|,$$

where $\lambda = \lim_{z \to \infty} h(z)$.

Proof. The function \tilde{u}_0 above clearly satisfies (4.2.2) and (4.2.3) with Ω^* replaced by X_m . We see that we can apply Lemmas 4.2.7 and 4.2.8. The proof is finished.

- **4.3.** In this subsection we look in more detail at conformal parametrization of surfaces with one simple end which are conformally equivalent to **C**.
- Let $0 < \varepsilon < 1$. Let $M \hookrightarrow \mathbb{R}^n$ be a complete, 4.3.1. Theorem. connected, noncompact surface with $\int_M |A|^2 = 8\pi\varepsilon$. If $n \geq 4$, assume in addition that $\int_M K = 0$. Then M is embedded and admits a conformal parametrization $f: \mathbf{C} \to M \hookrightarrow \mathbf{R}^n$ such that

$$e^{-2c(n,\varepsilon)}|z_1-z_2| \le |f(z_1)-f(z_2)| \le e^{c(n,\varepsilon)}|z_1-z_2|$$

for each $z_1, z_2 \in \mathbf{C}$ and

$$\int_{C} |D^{2}f|^{2} \leq 2\pi e^{2c(n,\varepsilon)} (4\varepsilon + \frac{3}{4}(c(n,\varepsilon))^{2}),$$

where $c(n,\varepsilon) = 2(1 + \frac{4n^2(1-\varepsilon^{\frac{1}{n}})}{(1-\varepsilon)^2})\varepsilon$. 4.3.2. Corollary. Let $M \hookrightarrow \mathbb{R}^n$ be a complete, connected, noncompact surface immersed into \mathbb{R}^n . Assume that either

$$\int_{M} |A|^2 < 8\pi \quad and \quad n = 3$$

or

$$\int_{M} |A|^2 \le 4\pi \quad and \quad n \ge 4.$$

Then M is embedded.

- Remarks. 1. We refer the reader to the paper of Li and Yau [20] for a similar statement concerning compact surfaces immersed into \mathbb{R}^n . In fact it is not difficult to deduce 4.3.2 from results in [20] and our results regarding the behaviour of f near ∞ (see Theorem 4.2.1) and its proof).
- 2. The constants 8π and 4π are optimal. Indeed for n=3. Enneper's surface is not embedded and satisfies $\int_M |A|^2 = -2 \int_M K = 8\pi$. For n =4 one can consider surfaces $M_R \hookrightarrow \mathbf{R}^4 \simeq \mathbf{C}^2$ given by the immersions $f_R(z) = (\eta(|z|/R)z, z^2), \text{ where } \eta \in C_0^{\infty}([0,2)) \text{ and } \eta_{|[0,1]} \equiv 1, R > 0.$ As $R \to \infty$ one has $\int_{M_R} |A|^2 \to 4\pi$, $\int_{M_R} K \to -2\pi$.

Proof of Theorem 4.3.1. We first note that also for n = 3 our assumptions imply that $\int K = 0$, since, on one hand, for n = 3 the value of the integral $\int_M K$ is an integral multiple of 4π by [39] and on the other hand $|\int_M K| \leq \frac{1}{2} \int_M |A|^2 < 4\pi$. We can use the Gauss-Bonnet formula (see 4.2.5) together with 2.5.1 to infer that M is conformally equivalent to ${\bf C}$ and has one end of multiplicity one. Let $f: {\bf C} \to M \hookrightarrow {\bf R}^n$ be a conformal parametrization of M. As above let $\varphi = G \circ f$, where G is the Gauss map of M and let $u = \log |f_{x_1}| = \log |f_{x_2}|$. The function u satisfies $-\Delta u = \varphi^*\omega$ in ${\bf C}$ and using 4.2.1 and the fact that the multiplicity of the end is one we see that u(z) has a finite limit as $z \to \infty$. Multiplying f by a suitable constant, if necessary, we can assume that $\lim_{z\to\infty} u(z) = 0$. This "boundary condition" and the equation $-\Delta u = \varphi^*\omega$ determine u uniquely, and hence we can apply Corollary 3.5.7 to obtain $|u| \le c(n, \varepsilon)$. The estimates in 3.5.7 and 4.2.7 give also the required bound for $\int_{\bf C} |D^2 f|^2$.

To show that M is embedded, let us consider a point $w \in \mathbb{C}$ such that f(w) is not a point of selfintersection of M. (Such points exist by 4.2.8.) We prove that

$$(4.3.3) |f(z) - f(w)| \ge e^{-2c(n,\varepsilon)}|z - w|$$

for each $z \in \mathbf{C}$. To prove this, let us assume (without loss of generality) that w = 0 and f(w) = 0. For $z \neq 0$ we set

$$\tilde{f}(z) = \frac{f(\frac{1}{z})}{|f(\frac{1}{z})|^2}$$

Clearly \tilde{f} is a conformal parametrization of a surface $\tilde{\Sigma} \hookrightarrow \mathbf{R}^n$ which is the image of $\Sigma = M \setminus \{0\}$ by the inversion $\phi : x \to \frac{x}{|x|^2}$ of \mathbf{R}^n . We let $\tilde{\varphi} = \tilde{G} \circ \tilde{f}$ and $\tilde{u} = \log |\tilde{f}_{x_1}| = \log |\tilde{f}_{x_2}|$, where \tilde{G} is the Gauss mapping of $\tilde{\Sigma}$. Let \tilde{A} be the second form of $\tilde{\Sigma}$. The basic fact here is that

$$\int_M |A|^2 = \int_{ ilde{\Sigma}} | ilde{A}|^2,$$

see Lemma 4.3.4 below. This implies that $\int_{\mathbf{C}\setminus\{0\}} |D\tilde{\varphi}|^2 = \int_{\mathbf{C}} |D\varphi|^2 = 4\pi\varepsilon$ and hence $\tilde{\varphi}$ can be considered as an element of $W_0^{1,2}(\mathbf{C}, \mathbf{P}^n(\mathbf{C}))$. Moreover, from the proof of Lemma 4.3.4 below we see that $\int_{\mathbf{C}} \tilde{\varphi}^* \omega = 0$. The function \tilde{u} is smooth in $\mathbf{C}\setminus\{0\}$, since 0=f(0) is not a point of selfintersection of M. An easy calculation shows that $\lim_{z\to\infty} \tilde{u}(z) = -u(0)$ and using the fact that $\lim_{z\to\infty} \frac{|f(z)|}{|z|} = 1$ (see 4.2.1) we easily

verify that $\lim_{z\to 0} \tilde{u}(z) = 0$. We also have $-\Delta \tilde{u} = \tilde{\varphi}^* \omega$ in $\mathbb{C} \setminus \{0\}$. Let $\tilde{v} = v - u(0)$, where v is the solution of $-\Delta v = \tilde{\varphi}^* \omega$ in \mathbb{C} given in 3.5.7. The function $\tilde{u} - \tilde{v}$ is continuous in $\mathbb{C} \setminus \{0\}$, has a finite limit as $z \to 0$, tends to 0 as $z \to \infty$, and is harmonic in $\mathbb{C} \setminus \{0\}$. Hence $\tilde{u} = \tilde{v}$ and we see from 3.5.7 that $|\tilde{u} + u(0)| \leq c(\varepsilon, n)$. From this and the above estimate of u we obtain $|\tilde{u}| \leq 2c(\varepsilon, n)$ and (4.3.3) follows easily.

We note that what we have proved implies that the set \mathcal{U} of points of M which are not points of selfintersection is closed. By 4.2.8 it is nonempty and since M is properly immersed by 4.2.5, it is also open. Hence $\mathcal{U}=M$ and we see that 4.3.3 in fact holds for each $z,w\in\mathbf{C}$. The proof is finished.

Proof of Corollary 4.3.2. In view of the obvious inequality $|\int_M K| \le$ $\int_{M} \frac{1}{2} |A|^2$ and the Gauss-Bonnet formula in 4.2.5, the only case which does not directly follow from Theorem 4.3.1 is the case when $n \geq 4$, $\int_M |A|^2 = 4\pi$ and $\int_M K = -2\pi$. It is easy to describe explicitly the surfaces M satisfying these conditions. First we note that under these conditions we have $|A|^2 = -2K$ (pointwise) and hence M is a minimal surface. From the Gauss-Bonnet formula in 4.2.5 we see that M has one end of multiplicity two and is conformally equivalent to C. This means that M admits a conformal parametrization $f: \mathbf{C} \to M \hookrightarrow \mathbf{R}^n$ such that $\frac{|f(z)|}{|z|^2}$ has a finite and nonvanishing limit as $z \to \infty$. Moreover, since M is minimal, f is harmonic. Hence f has to be a quadratic polynomial and an easy calculation shows that M is contained in a four-dimensional subspace of \mathbb{R}^n and that, using suitable coordinates, we can identify this subspace with C^2 so that f becomes f(z) = (z + az^2, bz^2) for some $a, b \in \mathbb{C}$, $b \neq 0$. These surfaces are clearly embedded. The proof is finished.

4.3.4. Lemma. In the notation introduced in the proof of Theorem 4.3.1 we have

$$\int_{\tilde{\Sigma}} |\tilde{A}|^2 = \int_M |A|^2.$$

Proof. Let \tilde{K} and K denote respectively the Gauss curvature of $\tilde{\Sigma}$ and M and let $d\sigma$ and $d\tilde{\sigma}$ be respectively the area elements on $M \setminus \{0\}$ and $\tilde{\Sigma}$. We have (pointwise) $(|\tilde{A}|^2 - 2\tilde{K}) d\tilde{\sigma} = (|A|^2 - 2K) d\sigma$. See, for example, [40], Chapter 5. We know that K is integrable on M and we have seen in the proof of 4.3.1 that $\int_M K = 0$. It remains to check that we have some control over $\int_{\tilde{\Sigma}} K$. For r > 0 we let

 $v(r) = \frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\theta})| d\theta$, where $f: \mathbf{C} \to M \hookrightarrow \mathbf{R}^n$ is the conformal parametrization of M introduced in the proof of 4.3.1. (We recall that f(0) = 0 and $f(z) \neq 0$ for $z \neq 0$.) Since $\lim_{z \to \infty} \frac{|f(z)|}{|z|} = 1$ by 4.2.1, we have $\lim_{r \to \infty} (v(r) - \log r) = 0$. Using this and applying the mean value theorem on intervals of the form $(2^j, 2^{j+1})$ we see that there exists a sequence $r_j \to \infty$ such that $r_j v'(r_j) \to 1$. An elementary calculation shows that $\lim_{r \to 0} rv'(r) = 1$. Let $\rho_j > 0$ be a sequence converging to 0 and let $\Omega_j = \{z \in \mathbf{C}, \rho_j < |z| < r_j\}$. Since $\tilde{\Sigma}$ is the image of Σ under the inversion $\phi: x \to \frac{x}{|x|^2}$ of \mathbf{R}^n , the metric induced on $\mathbf{C} \setminus \{0\}$ by $\phi \circ f: \mathbf{C} \setminus \{0\} \to \tilde{\Sigma} \hookrightarrow \mathbf{R}^n$ is $\frac{1}{|f(z)|^4} e^{2u} \delta_{kl} = e^{2u_1} \delta_{kl}$. Hence

$$-\int_{\phi \circ f(\Omega_j)} \tilde{K} = \int_{\Omega_j} \Delta u_1 = \int_{\Omega_j} \Delta (-2\log|f(z)| + u)$$
$$= 4\pi \rho_j v'(\rho_j) - 4\pi r_j v'(r_j) + \int_{f(\Omega_j)} K \to 0$$

as $j \to \infty$ and thus

$$\int_{\phi \circ f(\Omega_j)} |\tilde{A}|^2 - \int_{f(\Omega_j)} |A|^2 \to 0$$

as $j \to \infty$. The proof is finished easily.

5. Lipschitz parametrization of $W^{2,2}$ graphs

Let $w: \mathbf{R}^2 \to \mathbf{R}$ be a function belonging to $W_{\mathrm{loc}}^{2,2}$ such that $\int_{\mathbf{R}^2} |D^2 w|^2 < +\infty$ and let $\Gamma \subset \mathbf{R}^3$ be its graph. We aim to prove Γ can be parametrized by a bilipshitz map $F: \mathbf{R}^2 \to \Gamma \subset \mathbf{R}^3$ which belongs to $W_{\mathrm{loc}}^{2,2}$ and for which the induced metric is continuous. This can be considered as an extension of a result of T.Toro [36], which in fact inspired the current work.

5.1. Let w be as above and assume moreover that it is smooth. Let Γ be the graph of w. Let $N:\Gamma\to \mathbf{S}^2$ be the classical Gauss map, i.e. for $X=(x_1,x_2,w(x_1,x_2))\in\Gamma$ we have

$$N(X) = \frac{1}{\sqrt{1 + |Dw(x)|^2}} (-w_{x_1}(x), -w_{x_2}(x), 1).$$

The orientation on Γ is defined, as usual, by the requirement that the diffeomorphism $x \to (x, w(x))$ between \mathbb{R}^2 and Γ is orientation

preserving. (The Grassmannian $G_{3,2}$ introduced in 2.2 can be of course identified with S^2 . With this identification the Kähler metric on $G_{3,2}$ introduced in 2.2 is the $\frac{1}{2}$ -multiple of the canonical metric on S^2 and the Kähler form ω is exactly the volume form given by the canonical metric.)

The second fundamental form A of Γ clearly satisfies $\int_{\Gamma} |A|^2 \le \int_{\mathbb{R}^2} |D^2 w|^2$. Let $f: \mathbb{C} \to \Gamma \subset \mathbb{R}^3$ be a conformal parametrization, the existence of which follows from Theorem 2.5.1. We let $u = \log |f_{x_1}| = \log |f_{x_2}|$ and $\varphi = N \circ f$. We recall that $-\Delta u = \varphi^* \omega$, where ω is the canonical volume form on \mathbb{S}^2 and that $\int_{\mathbb{C}} |D\varphi|^2 = \int_{\Gamma} |A|^2$. (The previous remark concerning the identification of $G_{3,2}$ and \mathbb{S}^2 accounts for the fact that the factor $\frac{1}{2}$ appearing in 2.4.3 has become 1.)

Let $\mathbf{S}_{+}^{2} = \{X = (x_{1}, x_{2}, x_{3}) \in \mathbf{S}^{2}, x_{3} \geq 0\}$ be the closed upper half sphere and let $T : \mathbf{S}_{+}^{2} \to \mathbf{R}^{2}$ be the volume preserving map constructed in the proof of 3.3.2. We let $\tilde{\varphi} = T \circ \varphi$. Clearly $|D\tilde{\varphi}| \leq 2|D\varphi|$ and $\varphi^{*}\omega = \det D\tilde{\varphi}$. (As above, we slightly abuse the notation by identifying the form $\varphi^{*}\omega$ with the function $*\varphi^{*}\omega$.)

We have $-\Delta u = \det D\tilde{\varphi}$ and $||D\tilde{\varphi}||_{L^2} \leq 2||D\varphi||_{L^2}$. Let u_1 be the solution of $-\Delta v = \det D\tilde{\varphi}$ given in 3.3.3. (Thus, in particular, $\lim_{z\to\infty} u_1(z) = 0$.) Let $H = u - u_1$. In view of Lemma 4.1.2 the harmonic function H must be constant. Replacing f by $z \to f(az + b)$ if necessary, we see that we can choose the conformal parametrization of Γ so that $H \equiv 0$, f(0) = (0, w(0)), $f_{x_2}(0) \cdot (1, 0, 0) = 0$, and $f_{x_2}(0) \cdot (0, 1, 0) > 0$.

These conditions determine f uniquely and in what follows we denote the unique conformal parametrization of Γ satisfying the above conditions by f_0 .

Let $u_0 = \log |f_{0x_1}| = \log |f_{0x_2}|$. The function u_0 satisfies the same estimates as u_1 , i.e.

(5.1.1)
$$\int_{\Gamma} |D^2 u_0| \le c \int_{\Gamma} |A|^2,$$

(5.1.2)
$$\left\{ \int_{\mathbf{C}} |Du_0|^2 \right\}^{1/2} \le \frac{1}{2} \sqrt{\frac{3}{2\pi}} \int_{\Gamma} |A|^2,$$

$$|u_0| \le \frac{1}{\pi} \int_{\Gamma} |A|^2,$$

and

$$\lim_{z \to \infty} u_0(z) = 0.$$

From these estimates we see that we can control $|Df_0|$ and $|D(f_0^{-1})|$. To control the bilipschitz constant of f_0 we still need to compare the instrinsic metric of Γ with the distance in \mathbb{R}^3 . This is done in the following lemma. The result can be deduced (with different constants) from the assertions in section 4, but we prefer to give a simple direct proof.

5.1.5 Lemma. Let $\operatorname{dist}_{\Gamma}$ denote the intrinsic distance on Γ . For each $X,Y\in\Gamma$ we have

$$\operatorname{dist}_{\Gamma}(X,Y) \leq \sqrt{1 + \frac{1}{\pi \tanh \pi} ||D^2 w||_{L^2}^2} |X - Y|.$$

Proof. Let X=(x,w(x)) and Y=(y,w(y)), where $x,y\in \mathbf{R}^2$. Since our statement is invariant under changing w to $\frac{1}{\lambda}w\circ\lambda R$, where $\lambda>0$ and R is an isometry, we can assume x=(0,0) and y=(1,0). Let $v(t)=w_{x_1}(t,0),\ a=\int_0^1 v,\ \text{and}\ \Phi(s)=\sqrt{1+|s|^2}.$ We have

$$\operatorname{dist}^2_{\Gamma}(X,Y) - |X-Y|^2 \leq \int_0^1 \Phi^2(v) - |X-Y|^2 = \int_0^1 |v|^2 - |a|^2$$

and as in (4.2.4) we see that

$$\int_0^1 |v|^2 - |a|^2 = \int_0^1 |v - a|^2 \le \frac{1}{\pi \tanh \pi} \int_{(0,1)^2} |Dv|^2$$
$$\le \frac{1}{\pi \tanh \pi} ||D^2 w||_{L^2}^2.$$

Since $|X - Y| \ge 1$, we obtain

$$\left(\frac{\operatorname{dist}_{\Gamma}(X,Y)}{|X-Y|}\right)^2 \leq 1 + \frac{1}{\pi\tanh\pi}||D^2w||_{L^2}^2$$

and the result follows.

5.2. Theorem. Let $w: \mathbf{R}^2 \to \mathbf{R}$ belong to $W_{loc}^{2,2}$ and assume that $\int_{\mathbf{R}^2} |D^2w|^2 < +\infty$. Let $\Gamma \subset \mathbf{R}^3$ be the graph of w. Then there is a conformal parametrization $f: \mathbf{C} \to \Gamma$ which belongs to $W_{loc}^{2,2}$ and satisfies

$$|f(x) - f(y)| \le e^{\frac{1}{\pi \tanh \pi} ||D^2 w||_{L^2}^2} |x - y| \le ||f(x) - f(y)|| \le e^{\frac{1}{\pi} ||D^2 w||_{L^2}^2} |x - y|,$$

(ii) the metric $(Df)^t(Df)$ is continuous, and

(iii) $\int_{\mathbf{C}} |D^2 f|^2 \leq e^{\frac{2}{\pi}||D^2 w||_{L^2}^2} (||D^2 w||_{L^2}^2 + \frac{3}{2\pi}||D^2 w||_{L^2}^4)$ Moreover, if $\tilde{f}: \mathbf{C} \to \Gamma \subset \mathbf{R}^3$ belongs to $W_{loc}^{1,1}$ and satisfies $|\tilde{f}_{x_1}| = |\tilde{f}_{x_2}|, \quad \tilde{f}_{x_1} \cdot \tilde{f}_{x_2} = 0$, and $(\tilde{f}_{x_1} \wedge \tilde{f}_{x_2}) \cdot (0,0,1) \geq 0$ a.e. in \mathbf{C} , then $\tilde{f} = f \circ h$ for a holomorphic function $h: \mathbf{C} \to \mathbf{C}$.

Proof. For $\varepsilon > 0$ let $w_{\varepsilon} = w * \rho_{\varepsilon}$, where ρ_{ε} is the standard mollifying function, let Γ_{ε} be the graph of w_{ε} and let $f_0^{\varepsilon} : \mathbf{C} \to \Gamma_{\varepsilon}$ be the unique conformal parametrization of Γ_{ε} which we obtained in section 5.1. Using the estimates in that section, we see that there is a sequence $\varepsilon_k \to 0$ such that $f_0^{\varepsilon_k}$ converges uniformly on compact subsets to $f : \mathbf{C} \to \mathbf{R}^3$, which has the required properties (see 4.2.7 for the estimates of $D^2 f$).

As for the proof of the last statement, let us consider $\tilde{f}: \mathbf{C} \to \Gamma$ which belongs to $W^{1,1}_{\mathrm{loc}}(\mathbf{C})$ and satisfies the conformality conditions above. We have to prove that $h = f^{-1} \circ \tilde{f}$ is holomorphic. Using the fact that f satisfies (i) we see that $h \in W^{1,1}_{\mathrm{loc}}(\mathbf{C})$. Hence h is approximately differentiable a.e. in \mathbf{C} , see [10], Theorem 3.1.4 and [22], Lemma 3.1.1. We aim to prove that the approximate differential $D_{\mathrm{ap}}h$ satisfies the Cauchy-Riemann conditions a.e. in \mathbf{C} . This would be clear if we knew that we can apply the chain rule when taking the derivatives of $f^{-1} \circ \tilde{f}$. We prove that the chain rule can indeed be applied. Let us say that a linear map $L: \mathbf{R}^2 \to \mathbf{R}^3$ satisfies the condition (C) if it is conformal (i.e. $L^t L = \lambda \mathrm{Id}$ for some $\lambda \geq 0$) and satisfies $(Le_1 \wedge Le_2) \cdot (0,0,1) > 0$, where e_1, e_2 is the cannonical basis of \mathbf{R}^2 . Let

$$\Gamma_{\text{reg}} = \{ y \in \Gamma, f \text{ is differentiable}$$

at $a = f^{-1}(y)$ and $Df(a)$ satisfies (C)}.

From the properties of f we see that $H^2(\Gamma \backslash \Gamma_{\text{reg}}) = 0$, where H^2 denotes the two-dimensional Hausdorff measure. Let A be the set of all points of \mathbf{C} at which \tilde{f} is approximately differentiable and $D_{\text{ap}}\tilde{f}(z)$ satisfies the conformality conditions above. Let also $A_1 = \{z \in A, \, D_{\text{ap}}\tilde{f} \neq 0\}$. Since f satisfies (i), we see that h is approximately differentiable (with $D_{\text{ap}}h = 0$) on $A \backslash A_1$. Let $z \in A_1$ with $\tilde{f}(z) \in \Gamma_{\text{reg}}$. In this case it is not difficult to verify that h is approximately differentiable at z and that $D_{\text{ap}}h(z)$ satisfies the Cauchy-Riemann conditions.

Under our assumptions the area formula ([10], Theorem 3.2.5) im-

plies

$$\int_{E} \frac{1}{2} |D_{\rm ap} \tilde{f}|^{2} = \int_{E} |{\rm det} D_{\rm ap} \tilde{f}| = \int_{\tilde{f}(E)} N(y, \tilde{f}, E) \, dH^{2}(y),$$

where E is any measurable subset of A_1 and $N(y, \tilde{f}, E)$ denotes the number of elements of the set $\{x \in E, \tilde{f}(x) = y\}$. See the proof of Theorem 2 from [34] to check that Theorem 3.2.5 from [10] can be applied in our situation. We infer that $H^2(\tilde{f}(E)) > 0$ whenever the measure of $E \subset A_1$ is positive. This shows that $\tilde{f}(z) \in \Gamma_{\text{reg}}$ for a.e. $z \in A_1$. Since the measure of $\mathbb{C} \setminus A$ is zero (use Theorem 4.5.9 from [10] or Lemma 3.1.1 from [22] and our assumptions), we see that $D_{\text{ap}}h$ exists and satisfies the Cauchy-Riemann conditions a.e. in \mathbb{C} . Under our assumption the distributional derivative of h and $D_{\text{ap}}h$ coincide a.e. in \mathbb{C} (see [10], Theorem 4.5.9 or [22], Lemma 3.1.1). Using the Weyl's lemma, we see that h is holomorphic. The proof is finished.

The estimates in 5.2 involve exponential dependence on $||D^2w||_{L^2}^2$. One can deduce from 5.2 also the existence of bilipschitz parametrizations of Γ with Lipschitz constants that depend on $||D^2w||_{L^2}$ only linearly:

5.3. Corollary. There exist constants $c, \tilde{c} > 0$ such that the following holds. Let $w: \mathbf{R}^2 \to \mathbf{R}$ belong to $W_{loc}^{2,2}$ and let $\int_{\mathbf{R}^2} |D^2 w|^2 < +\infty$. Let Γ be the graph of w. Then Γ admits a parametrization by a bilipschitz map $F: \mathbf{C} \to \Gamma$ which satisfies

(i)
$$\max(\tilde{c}, 1 - c||D^2w||_{L^2}^2)|x - y| \le |F(x) - F(y)|$$

$$\leq (1+c||D^2w||_{L^2}^2)^{1/2}|x-y|,$$

(ii) the metric $(DF)^t(DF)$ is continuous, and

(iii)
$$\int_{\mathbf{C}} |D^2 F|^2 \le c||D^2 w||_{L^2}^2$$
.

Proof. We can use a trick from [36]. Apply Theorem 5.2 to εw for a suitable small $\varepsilon > 0$ and then scale back. The details are left to the reader.

Acknowledgements

It is a great pleasure to thank H. Karcher for his continued interest and helpful advice. We are grateful to L.Simon who pointed out to us the work of Li and Yau [20]. We would also like to thank the referee for his helpful suggestions.

References

- [1] R.A. Adams, Sobolev spaces, Academic Press, 1975.
- [2] F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Mathematica **78** (1993) 417-443.
- [3] H. Brezis & J. M. Coron, Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math. 37 (1984) 149-187.
- [4] J.E. Brothers, Integral geometry in homogeneous spaces, Trans. Amer. Math. Soc. 124 (1966) 480–517.
- [5] S. S. Chern & R. Osserman, Complete minimal surfaces in euclidean n-space, J. Analyse Math. 19 (1967) 15-34.
- [6] L. F. Cheung, The nonexistence of some noncompact constant mean curvature surfaces, Proc. Amer. Math. Soc. 121 (1994) 1207.
- [7] R. Coifman & P. L. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. **72** (1993) 247–286.
- [8] L. C. Evans, Partial regularity for stationary harmonic maps, Arch. Rat. Mech. Anal. 116 (1991) 101-123.
- [9] L. C. Evans & S. Müller, Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, J. Amer. Math. Soc. 7 (1994) 199–219.
- [10] H. Federer, Geometric measure theory, Springer, 1969.
- [11] C. Fefferman & E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972) 137–193.
- [12] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemanienne, C.R. Acad. Sci. Paris 312 (1991) 591–596.
- [13] S. Helgason, Groups and geometric analysis, Academic Press, 1984.
- [14] M. W. Hirsch, Differential topology, Springer, 1988.

- [15] A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. **32** (1957) 181–206.
- [16] J. E. Hutchinson & M. Meier, A remark on the nonuniqueness of tangent cones, Proc. Amer. Math. Soc. 97 (1986) 184–185.
- [17] S. Kobayashi & K. Nomidzu, Foundations of differential geometry, Wiley, New York, 1963.
- [18] H. B. Lawson: Lectures on minimal submanifolds, Vol. I, Publish or Perish, Berkeley, CA, 1980.
- [19] P. Li & L. F. Tam, Complete surfaces with finite total curvature,
 J. Differential Geometry 33 (1991) 139-168.
- [20] P. Li & S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. **69** (1982) 269-291.
- [21] J. Malý, personal communication.
- [22] Ch. B. Morrey, Multiple integrals in the calculus of variations, Springer, 1966.
- [23] S. Müller, Higher integrability of determinants and weak convergence in L^1 , J. Reine Angew. Math. **412** (1990) 20–34.
- [24] R. Osserman, Global properties of minimal surfaces in E^3 and E^n , Ann. of Math. 80 (1964) 340–364.
- [25] H. Rosenberg, Some recent developments in the theory of properly embedded minimal surfaces, Séminaire BOURBAKI, 44ème année, 1991–92, No. 759.
- [26] S. Semmes, Chord-arc surfaces with small constant, I, Adv. in Math. 85 (1991) 198–233.
- [27] _____, Chord-arc surfaces with small constant, II: good parametrizations, Adv. in Math. 88 (1991) 170–199.
- [28] _____, Hypersurfaces in \mathbb{R}^n whose normal has small BMO norm, Proc. Amer. Math. Soc. 112 (1991) 403-412.
- [29] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
- [30] K. Shiohama, Total curvatures and minimal areas of complete open surfaces, Proc. Amer. Math. Soc. **94** (1985) 310–316.
- [31] Spanier, Algebraic geometry, McGraw-Hill, 1966.
- [32] E. M. Stein, Singular Integrals and Differentiability Properties of

- Functions, Princeton University Press, 1970.
- [33] R. Schoen & K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geometry 18 (1983) 253-268.
- [34] V. Šverák, Regularity properties of deformations with finite energy, Arch. Rat. Mech. Anal. 100 (1988) 105–127.
- [35] L. Tartar, Remarks on oscillations and Stokes equations, in Macroscopic modelling of turbulent flows (Nice 1984), Lecture Notes in Physics 230, Springer, 1985, 24-31.
- [36] T. Toro, Surfaces with generalized second fundamental form in L² are Lipshitz manifolds, J. Differential Geometry **39** (1994) 65–101.
- [37] K. Uhlenbeck, Connections with L^p bounds on curvature, Comm. Math. Phys. 88 (1982) 11-30.
- [38] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969) 318-344.
- [39] B. White, Complete surfaces of finite total curvature, J. Differential Geometry **26** (1987) 315–326.
- [40] T. J. Willmore: Total curvature in riemannian geometry, Wiley, 1982.

Universität Freiburg, Germany University of Minnesota, Minneapolis, MN